

Supporting sustainable ICT procurement in Public Sector: The EURECA project

Rabih Bashroush, UEL <u>r.bashroush@qub.ac.uk</u>

Dublin, 11th May 2016

Outline

- Why worry about Sustainability?
- What are the challenges when it comes to public procurement?
- What is EURECA?
- Early Results: Hardware Refresh Rates
- Working together

Why worry about Sustainability?

Of world Electricity is used by Datacenters

3%

80%

Energy Consumption Reduction by 2050 compared to 1990 £90M

Annual UK Universities ICT Electricity bill 2012 (60% on servers)

EU Public Sector Spending (19% of GDP)

£0.00

What are the challenges when it comes to public procurement?

Complexity & Legal Uncertainty

COURT M

06

19, 1862

- Stakeholders
- Frameworks
- Decentralisation
- Legislations

- Low budget (%)
- Split incentives
- Not Core business

Lack of Technical Expertise

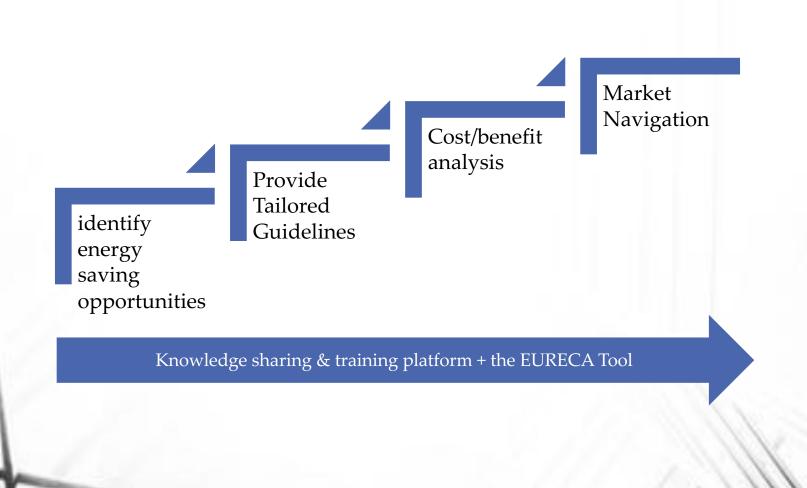
No Gent P

Standards Best practices Evaluation of Technologies

What is EURECA?

UEL

Project Overview

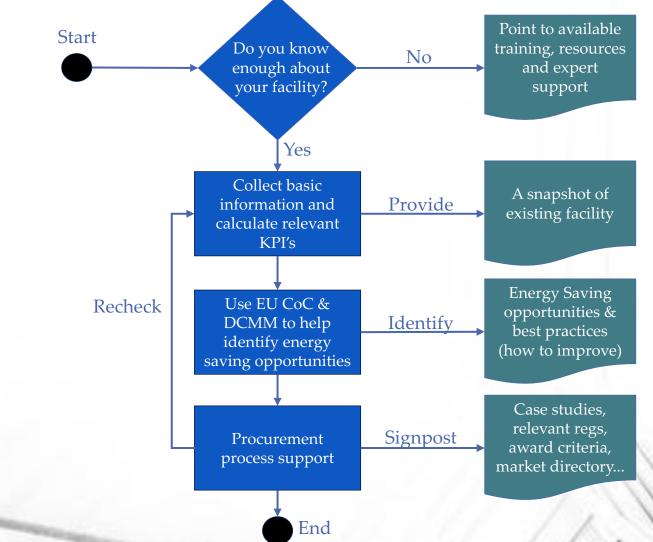

- Aim: Assist the public sector with the uptake of innovative energy efficient and environmentally sound data centre products and services.
- Project started on 1st March 2015 and will run for 30 months.
- Partners come from three main regions (Germany, Netherlands and UK), with wider EU focus.

riatacentrealliance.... NORLAND TelecityGroup Certios Certios Certios Certios Carbon³ IT maki Consulting

Approach

Approach

- Lack of technical expertise
 - EURECA Tool, training programmes
- Complexity and Legal Uncertainty
 - Templates, case studies, knowledge sharing
- Insufficient Priority
 - Awareness and policy recommendations
- Stakeholder oriented support
 - Procurers, Decision Makers, ICT Managers, and Policy Makers.


Knowledge Sharing & Training Events

Date	Location
June, 2015	London
November, 2015	Riga
February, 2016	Turin
May, 2016	Dublin
September, 2016	Amsterdam^
November, 2016	Paris^
February, 2017	Stockholm^
May, 2017	Barcelona^
August, 2017	Brussels^

The EURECA Tool

Early Results: Hardware Refresh Rates

Overview

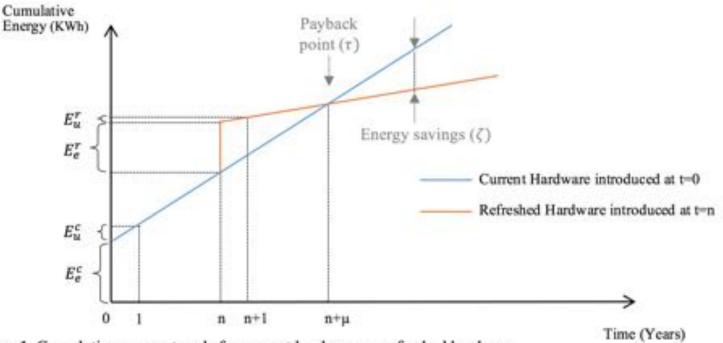


Figure 1. Cumulative energy trends for current hardware vs refreshed hardware

Payback time and Savings

$$\tau = n + \frac{E_e^r}{E_u^c - E_u^r}$$

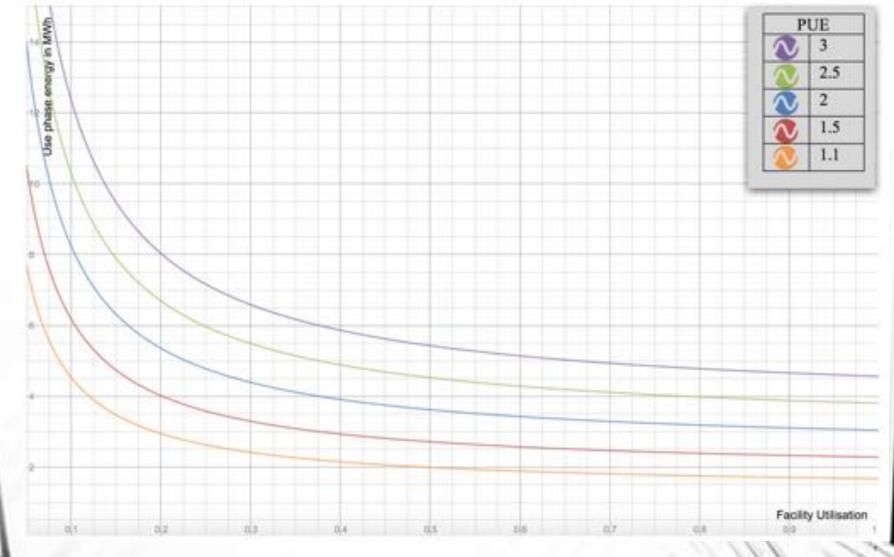
$$\mu = \frac{E_e^r}{E_u^c - E_u^r}$$

$$\zeta_{\sigma} = E^r - E^c = (E_u^c - E_u^r)(\sigma - n) - E_e^r$$

Embodied Energy of Enterprise Servers

- Values range between 1MWh and 650KWh
- Value chosen is 1MWh
- Server use phase energy:

 $E_u^s = AE_u^s \times PUE$


Workload based analysis

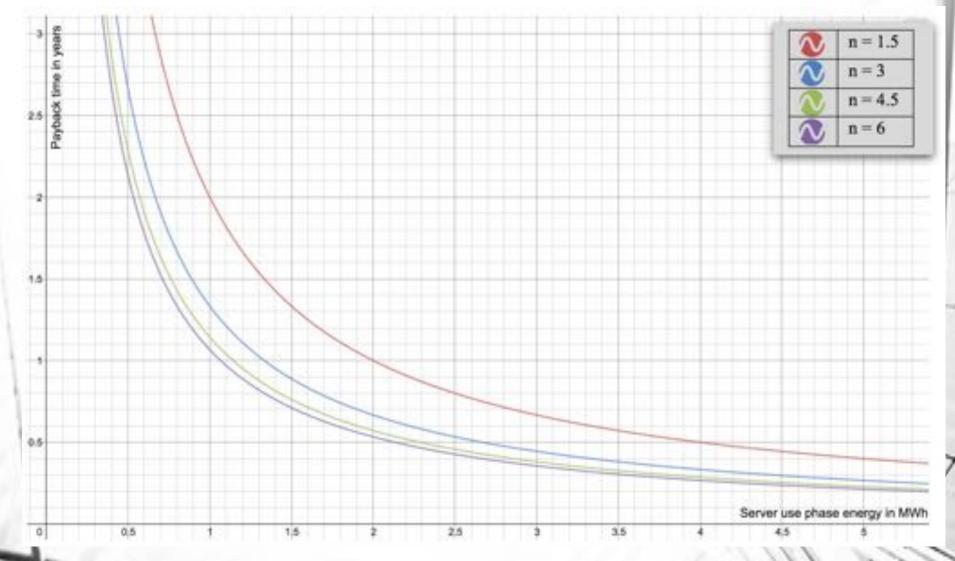
$$AE_{u}^{s} = (E_{i}^{s}\alpha + E_{o}^{s}\beta) \times 8.76$$
$$E_{u}^{\omega} = (E_{o}^{\omega} + E_{i}^{\omega}\frac{\alpha}{\beta}) \times 8.76 \times PUE$$

survey and the first of

Technology trends

• Performance improvement of servers over time:

$$E_u^r = \frac{E_u^c}{2^{\left(\frac{n}{1.5}\right)}}$$


• Payback time for a server:

$$\mu = \frac{E_e^r}{E_u^c} \left(1 - \frac{1}{2^{\left(\frac{n}{1.5}\right)}} \right)^{-1}$$

starts are dealers

25-13-23).	Scenario	PUE	β	Annual Use Phase Energy in KWh (for running workload ω)						
		PUE		Hardware 1	Hardware 2	Hardware 3	Hardware 4	Hardware 5	Hardware 6	
e (pag	Worst	3	5%	51,372,685	15,414,061	12,840,312	6,257,229	2,453,698	2,093,779	
On-Premise on-virtualise	Average	2	10%	17,708,754	5,533,001	4,617,433	2,356,780	952,302	820,422	
On-Premise (non-virtualised)	Best	1.5	25%	5,838,699	2,015,383	1,688,826	950,967	406,652	356,373	
(p	Worst	2.5	5%	42,810,571	12,845,052	10,700,260	5,214,358	2,044,749	1,744,816	
Colocation n-virtualise	Average	1.8	10%	15,937,879	4,979,702	4,155,690	2,121,102	857,072	738,380	
(nor	Best	1.3	25%	5,060,206	1,746,666	1,463,650	824,172	352,433	308,857	
nise sed)	Worst	3	6%	43,102,834	13,042,542	10,868,925	5,349,876	2,111,950	1,806,064	
On-Premise (virtualised)	Average	2	30%	6,682,286	2,370,976	1,988,917	1,146,976	496,637	436,802	
03	Best	1.5	60%	2,944,252	1,185,352	998,841	633,394	287,041	255,673	
Private Cloud	Worst	2.5	7%	30,996,498	9,457,166	7,883,993	3,918,139	1,556,537	1,333,795	
ivate (Average	1.8	30%	6,014,058	2,133,878	1,790,026	1,032,279	446,974	393,122	
Pr	Best	1.3	60%	2,551,685	1,027,305	865,662	548,941	248,769	221,583	
cloud	Worst	2	7%	24,797,198	7,565,733	6,307,194	3,134,511	1,245,229	1,067,036	
Public Cloud	Average	1.5	40%	3,977,983	1,481,792	1,245,265	746,813	329,759	291,637	
	Best	1.1	70%	1,942,527	807,147	680,852	440,725	201,546	179,958	

Table 4. Annual use phase energy consumption of workload ω for various deployment options using worst, average and best case scenarios for the 6 different hardware profiles.

	Scenario		0	Annual Use Phase Energy in KWh (for a server)						
		PUE	β	Hardware 1	Hardware 2	Hardware 3	Hardware 4	Hardware 5	Hardware 6	
se ()	Worst	3	5%	3,777	2,462	3,016	2,194	1,441	1,040	
On-Premise on-virtualise	Average	2	10%	2,604	1,767	2,169	1,653	1,119	815	
non-v	Best	1.5	25%	2,146	1,609	1,984	1,667	1,194	885	
n sed)	Worst	2.5	5%	3,148	2,051	2,514	1,829	1,201	866	
Colocation on-virtualise	Average	1.8	10%	2,344	1,591	1,953	1,488	1,007	733	
Colocation On-Premise (non-virtualised) (non-virtualised)	Best	1.3	25%	1,860	1,395	1,719	1,445	1,035	767	
	Worst	3	6%	3,803	2,500	3,064	2,251	1,489	1,076	
On-Premise (virtualised)	Average	2	30%	2,948	2,272	2,803	2,413	1,750	1,301	
On-I	Best	1.5	60%	2,598	2,272	2,816	2,665	2,023	1,523	
P	Worst	2.5	7%	3,191	2,115	2,593	1,924	1,280	927	
Private Cloud	Average	1.8	30%	2,653	2,045	2,523	2,172	1,575	1,171	
Priva	Best	1.3	60%	2,251	1,969	2,440	2,310	1,753	1,320	
Ъ	Worst	2	7%	2,553	1,692	2,074	1,539	1,024	742	
Public Cloud	Average	1.5	40%	2,340	1,893	2,340	2,095	1,549	1,158	
Publi	Best	1.1	70%	2,000	1,805	2,239	2,164	1,657	1,251	

Table 5. Annual use phase energy consumption of a server given various deployment options using worst, average and best case scenarios for the 6 different hardware profiles.

profiles.

PROJECT		
Table 6.	Number of servers needed to run workload ω given various deployment scenarios and hardware	

	C	DUT	JE β	Number of servers needed to run workload ω						
	Scenario	PUE		Hardware 1	Hardware 2	Hardware 3	Hardware 4	Hardware 5	Hardware 6	
se ised)	Worst	3	5%	13,601	6,261	4,257	2,852	1,703	2,014	
On-Premise on-virtualise	Average	2	10%	6,800	3,131	2,128	1,426	851	1,007	
Colocation On-Premise (non-virtualised) (non-virtualised)	Best	1.5	25%	2,720	1,252	851	570	341	403	
ised)	Worst	2.5	5%	13,601	6,261	4,257	2,852	1,703	2,014	
Colocation n-virtualise	Average	1.8	10%	6,800	3,131	2,128	1,426	851	1,007	
Col (non-v	Best	1.3	25%	2,720	1,252	851	570	341	403	
	Worst	3	6%	11,334	5,218	3,547	2,376	1,419	1,678	
On-Premise (virtualised)	Average	2	30%	2,267	1,044	709	475	284	336	
on-	Best	1.5	60%	1,133	522	355	238	142	168	
pn	Worst	2.5	7%	9,715	4,472	3,041	2,037	1,216	1,439	
Private Cloud	Average	1.8	30%	2,267	1,044	709	475	284	336	
Priva	Best	1.3	60%	1,133	522	355	238	142	168	
pn	Worst	2	7%	9,715	4,472	3,041	2,037	1,216	1,439	
Public Cloud	Average	1.5	40%	1,700	783	532	356	213	252	
Publi	Best	1.1	70%	971	447	304	204	122	144	

Working together

- We are looking for public sector partners to work with us to help prove the concept
- Looking for public sector "champions" in this field
- To drive knowledge sharing and networking
- Help steer and tailor the EURECA tool design and results
- Please register your interest at: <u>www.EURECA-PROJECT.eu</u>